Increased Phosphorylation of Liver Histone F_1 Following the Administration of 3,5,3'-Triiodo-L-Thyronine (T_3)

Although the regulation of transcription in eucaryotic cells is still largely unclear, there is growing evidence that phosphorylation of lysine-rich histone F_1 may be involved in this process. In fact, it has repeatedly been suggested that enhanced phosphorylation of histone F_1 could cause derepression of DNA template activity and stimulation of RNA and protein biosynthesis $^{1-4}$. The present study was designed to investigate whether the increased RNA and protein biosynthesis induced in rat liver by T_3 administration 5 may be related to enhanced histone F_1 phosphorylation.

Materials and methods. Normal and thyroidectomized male Wistar rats, 140 to 180 g, were employed. Thyroidectomized rats were used 4 weeks postoperatively. T_3 (Merck A.G., Darmstadt, Germany) was injected i.p. with single daily doses of 30 µg/100 g body wt. for 1 or 4 consecutive days. The rats were killed 16 h after the last injection of the hormone. 32 P-phosphate (The Radiochemical Centre, Amersham, England) in 0.14 M NaCl containing 10^{-4} M carrier inorganic phosphate was injected i.p. at a dosage of 1 mCi/100 g body wt. 2 h before death. All animals were fasted overnight prior to sacrifice. Liver histone F_1 was prepared according to Langan 6 , and contaminating nonhistone phosphoproteins

Table I. In vivo phosphorylation of liver histone F_1 from intact rats treated with T_{α}

No. of rats	Days of treatment	Rate of histone phosphorylation	Change (%)
10	_	2.35 ± 0.30	
6	1	3.78 ± 0.48	+ 60.8
4	4	7.62 ± 0.64	+ 224.2

The rate of histone phosphorylation is expressed as nmoles ^{32}Pi incorporated/2 h per mg histone. The values are means \pm S.D.

Table II. In vivo phosphorylation of liver histone ${\rm F_1}$ from thyroid-ectomized rats treated with ${\rm T_3}$

No. of rats	Days of treatment	Rate of histone phosphorylation	Change (%)
10		1.80 ± 0.25	
6	1	2.42 ± 0.34	+ 34.4
4	4	5.48 ± 0.65	+ 204.4

The rate of histone phosphorylation is expressed as nmoles $^{32}{\rm Pi}$ incorporated/2 h per mg histone. The values are means \pm S.D.

were removed by chromatography on DEAE-cellulose? Liver inorganic phosphate and alkali-labile histone phosphate were determined by the method of Martin and Doty⁸; ³²P radioactivity was measured in a Beckman liquid scintillation counter according to Ellis et al. ⁹. The observed counts were corrected to account for individual variations in the labelling of liver inorganic phosphate pool and expressed as nmoles ³²Pi according to Takeda and Ohga ¹⁰. Proteins were determined by the Lowry technique ¹¹.

Results. The data reported in Table I demonstrate that T_3 administered to intact rats significantly stimulated incorporation of $^{32}\mathrm{Pi}$ into liver lysine-rich histone F_1 . The rate of histone phosphorylation was increased to about 60% 16 h after a single injection of T_3 and to 224% when the hormone was injected for 4 consecutive days.

As can be seen from Table II, marked increases in histone phosphorylation were also detected in livers from thyroidectomized rats treated with T_3 .

Assuming that histone phosphorylation is implicated in the stimulation of transcription, the results reported could suggest that the well-known increase induced by T_3 administration in rat liver RNA and protein biosynthesis is supported, at least in part, by the enhanced phosphorylation of lysine-rich histone F_1 .

Riassunto. Si è dimostrato che la somministrazione di 3,5,3'-Triiodo-L-Tironina stimola nettamente la fosforilazione in vivo dell'istone F_1 nel fegato del ratto. Si avanza l'ipotesi che l'aumentata fosforilazione dell'istone F_1 possa favorire, nel fegato del ratto trattato con l'ormone tiroideo, il processo di trascrizione e la biosintesi proteica.

A. Zoncheddu and A. Viarengo

Istituto di Fisiologia Generale, Università di Genova, Corso Europa, I-16132 Genova (Italy), 10 January 1974.

- ¹ L. J. Kleinsmith, V. G. Allfrey and A. E. Mirsky, Proc. natn. Acad. Sci., USA 55, 1182 (1966).
- ² M. G. ORD and L. A. STOCKEN, Biochem. J. 107, 403 (1968).
- ³ T. A. Langan, J. biol. Chem. 244, 5763 (1969).
- ⁴ K. Letnansky and L. Reisinger, Biochem. biophys. Res. Commun. 49, 312 (1972).
- ⁵ J. R. Тата, Biochem. J. 104, 1 (1967).
- ⁶ T. A. Langan, Proc. natn. Acad. Sci. USA 64, 1276 (1969).
- ⁷ R. H. Buckingham and L. A. Stocken, Biochem. J. 117, 509 (1970).
- 8 J. B. Martin and D. M. Doty, Analyt. Chem. 21, 965 (1949).
- ⁹ M. K. Ellis, S. N. Wampler and R. H. Yager, Analyt. chim. Acta 34, 169 (1966).
- ¹⁰ M. Takeda and Y. Ohga, J. Biochem. 73, 621 (1973).
- ¹¹ O. H. LOWRY, N. J. ROSEBROUGH, A. L. FARR and R. J. RANDALL, J. biol. Chem. 193, 265 (1951).

The Effect of Isoniazid on Human Chromosomes Studied by a New Method

Isoniazid (IN, isonicotinic acid hydrazide), a drug originally used in the treatment of tuberculosis and more recently as a psychic energizer, was reported to cause chromosomal abnormalities (gaps, breaks, deletions, fragmentations) in bone marrow cells of a rat after a single weekly injection of 65 µg IN/g body weight¹.

When we cultured human peripheral lymphocytes in the presence of IN at several concentrations and for different times of exposure to IN, we did not observe any structural differences under a light microscope between the treated

¹ L. Cirnu-Georgian and V. Lenghel, Lancet 2, 93 (1971).